
www.cwi.nl/~boncz/bads

Big Data for Data Science

SQL on Big Data

www.cwi.nl/~boncz/bads

THE DEBATE:
DATABASE SYSTEMS VS
MAPREDUCE

www.cwi.nl/~boncz/bads

A major step backwards?
• MapReduce is a step backward in database access

– Schemas are good
– Separation of the schema from the application is good
– High-level access languages are good

• MapReduce is poor implementation
– Brute force and only brute force (no indexes, for example)

• MapReduce is not novel
• MapReduce is missing features

– Bulk loader, indexing, updates, transactions…
• MapReduce is incompatible with DMBS tools

Source: Blog post by DeWitt and Stonebraker

Michael Stonebraker
Turing Award Winner 2015

www.cwi.nl/~boncz/bads

Known and unknown unknowns
• Databases only help if you know what questions to ask

– “Known unknowns”
• What’s if you don’t know what you’re looking for?

– “Unknown unknowns”

www.cwi.nl/~boncz/bads

ETL: redux
• Often, with noisy datasets, ETL is the analysis!
• Note that ETL necessarily involves brute force data scans
• L, then E and T?

www.cwi.nl/~boncz/bads

Structure of Hadoop warehouses

Source: Wikipedia (Star Schema)

Don’t normalize!

www.cwi.nl/~boncz/bads

A major step backwards?
• MapReduce is a step backward in database access:

– Schemas are good
– Separation of the schema from the application is good
– High-level access languages are good

• MapReduce is poor implementation
– Brute force and only brute force (no indexes, for example)

• MapReduce is not novel
• MapReduce is missing features

– Bulk loader, indexing, updates, transactions…
• MapReduce is incompatible with DMBS tools

Source: Blog post by DeWitt and Stonebraker

Bottom line: issue of maturity, not fundamental capability!

www.cwi.nl/~boncz/bads

Relational databases vs. MapReduce
• Relational databases:

– Multipurpose: analysis and transactions; batch and interactive
– Data integrity via ACID transactions
– Lots of tools in software ecosystem (for ingesting, reporting, etc.)
– Supports SQL (and SQL integration, e.g., JDBC)
– Automatic SQL query optimization

• MapReduce (Hadoop):
– Designed for large clusters, fault tolerant
– Data is accessed in “native format”
– Supports many query languages
– Programmers retain control over performance
– Open source

Source: O’Reilly Blog post by Joseph Hellerstein (11/19/2008)

www.cwi.nl/~boncz/bads

Philosophical differences
• Parallel relational databases

– Schema on write
– Failures are relatively infrequent
– “Possessive” of data
– Mostly proprietary

• MapReduce
– Schema on read
– Failures are relatively common
– In situ data processing
– Open source

www.cwi.nl/~boncz/bads

MapReduce vs. RDBMS: grep

SELECT * FROM Data WHERE field LIKE ‘%XYZ%’;

Source: Pavlo et al. (2009) A Comparison of Approaches to Large-Scale Data Analysis. SIGMOD.

Vertica RDBMS Hadoop

70 1500

00

60
50
40
30
20
10

1250

1000

750

500

250

1 10 25 50 100 25 50 100

se
co

nd
s

se
co

nd
s

nodes nodes

535MB/node 1TB/cluster

www.cwi.nl/~boncz/bads

MapReduce vs. RDBMS: select

SELECT pageURL, pageRank
FROM Rankings WHERE pageRank > X;

Source: Pavlo et al. (2009) A Comparison of Approaches to Large-Scale Data Analysis. SIGMOD.

Vertica RDBMS Hadoop

160

0

120
100
80
60
40
20

1 10 25 50 100

se
co

nd
s

nodes

140

www.cwi.nl/~boncz/bads

MapReduce vs. RDBMS: aggregation

SELECT sourceIP, SUM(adRevenue)
FROM UserVisits GROUP BY sourceIP;

Source: Pavlo et al. (2009) A Comparison of Approaches to Large-Scale Data Analysis. SIGMOD.

Vertica RDBMS Hadoop

1200

0

1000
800
600
400
200

se
co

nd
s

nodes

2k groups160

0

120
100
80
60
40
20

1 10 25 50 100

se
co

nd
s

nodes

140

1 10 25 50 100

2.5M groups
1400

www.cwi.nl/~boncz/bads

MapReduce vs. RDBMS: join

Source: Pavlo et al. (2009) A Comparison of Approaches to Large-Scale Data Analysis. SIGMOD.

Vertica RDBMS Hadoop

1600

0

1200
1000
800
600
400
200

1 10 25 50 100

se
co

nd
s

nodes

1400

1800

www.cwi.nl/~boncz/bads

Why?
• Schemas are a good idea

– Parsing fields out of flat text files is slow
– Schemas define a contract, decoupling logical from physical

• Schemas allow for building efficient auxiliary structures
– Value indexes, join indexes, etc.

• Relational algorithms have been optimised for the underlying system
– The system itself has complete control of performance-critical decisions
– Storage layout, choice of algorithm, order of execution, etc.

www.cwi.nl/~boncz/bads

Alleviating schema absence: thrift
• Originally developed by Facebook, now an Apache project
• Provides a Data Definition Language (DDL) with numerous language

bindings
– Compact binary encoding of typed structs

– Fields can be marked as optional or required
– Compiler automatically generates code for manipulating messages

• Provides Remote Procedure Call (RPC) mechanisms for service definitions
• Alternatives include protobufs and Avro

www.cwi.nl/~boncz/bads

Thrift

struct Tweet {
1: required i32 userId;
2: required string userName;
3: required string text;
4: optional Location loc;
}

struct Location {
1: required double latitude;
2: required double longitude;
}

www.cwi.nl/~boncz/bads

Storage layout: row vs. column stores

R1

R2

R3

R4

Row store

Column store

www.cwi.nl/~boncz/bads

Storage layout: row vs. column stores
• Row stores

– Easy to modify a record
– Might read unnecessary data when processing

• Column stores
– Only read necessary data when processing
– Tuple writes require multiple accesses

www.cwi.nl/~boncz/bads

Advantages of column stores
• Read efficiency

– If only need to access a few columns, no need to drag around the rest
of the values

• Better compression
– Repeated values appear more frequently in a column than repeated

rows appear
• Vectorised processing

– Leveraging CPU architecture-level support
• Opportunities to operate directly on compressed data

– For instance, when evaluating a selection; or when projecting a column

www.cwi.nl/~boncz/bads

Why not in Hadoop?

Source: He et al. (2011) RCFile: A Fast and Space-Efficient Data Placement Structure in MapReduce-based Warehouse Systems. ICDE.

No reason why not

limitation would not help our goal of fast query pro-
cessing for a huge amount of disk scans on massively
growing data sets.

3) Limited by the page-level data manipulation inside a
traditional DBMS engine, PAX uses a fixed page as the
basic unit of data record organization. With such a fixed
size, PAX would not efficiently store data sets with a
highly-diverse range of data resource types of different
sizes in large data processing systems, such as the one
in Facebook.

III. THE DESIGN AND IMPLEMENTATION OF RCFILE

In this section, we present RCFile (Record Columnar File),
a data placement structure designed for MapReduce-based data
warehouse systems, such as Hive. RCFile applies the concept
of “first horizontally-partition, then vertically-partition” from
PAX. It combines the advantages of both row-store and
column-store. First, as row-store, RCFile guarantees that data
in the same row are located in the same node, thus it has
low cost of tuple reconstruction. Second, as column-store,
RCFile can exploit a column-wise data compression and skip
unnecessary column reads.

A. Data Layout and Compression

RCFile is designed and implemented on top of the Hadoop
Distributed File System (HDFS). As demonstrated in the
example shown in Figure 3, RCFile has the following data
layout to store a table:

1) According to the HDFS structure, a table can have
multiple HDFS blocks.

2) In each HDFS block, RCFile organizes records with
the basic unit of a row group. That is to say, all the
records stored in an HDFS block are partitioned into
row groups. For a table, all row groups have the same
size. Depending on the row group size and the HDFS
block size, an HDFS block can have only one or multiple
row groups.

Fig. 3: An example to demonstrate the data layout of RCFile
in an HDFS block.

3) A row group contains three sections. The first section is
a sync marker that is placed in the beginning of the row
group. The sync marker is mainly used to separate two
continuous row groups in an HDFS block. The second
section is a metadata header for the row group. The
metadata header stores the information items on how
many records are in this row group, how many bytes
are in each column, and how many bytes are in each
field in a column. The third section is the table data
section that is actually a column-store. In this section,
all the fields in the same column are stored continuously
together. For example, as shown in Figure 3, the section
first stores all fields in column A, and then all fields in
column B, and so on.

We now introduce how data is compressed in RCFile. In
each row group, the metadata header section and the table
data section are compressed independently as follows.

• First, for the whole metadata header section, RCFile uses
the RLE (Run Length Encoding) algorithm to compress
data. Since all the values of the field lengths in the same
column are continuously stored in this section, the RLE
algorithm can find long runs of repeated data values,
especially for fixed field lengths.

• Second, the table data section is not compressed as a
whole unit. Rather, each column is independently com-
pressed with the Gzip compression algorithm. RCFile
uses the heavy-weight Gzip algorithm in order to get
better compression ratios than other light-weight algo-
rithms. For example, the RLE algorithm is not used since
the column data is not already sorted. In addition, due
to the lazy decompression technology to be discussed
next, RCFile does not need to decompress all the columns
when processing a row group. Thus, the relatively high
decompression overhead of the Gzip algorithm can be
reduced.

Though currently RCFile uses the same algorithm for all
columns in the table data section, it allows us to use different
algorithms to compress different columns. One future work
related to the RCFile project is to automatically select the
best compression algorithm for each column according to its
data type and data distribution.

B. Data Appending

RCFile does not allow arbitrary data writing operations.
Only an appending interface is provided for data writing in
RCFile because the underlying HDFS currently only supports
data writes to the end of a file. The method of data appending
in RCFile is summarized as follows.

1) RCFile creates and maintains an in-memory column

holder for each column. When a record is appended,
all its fields will be scattered, and each field will
be appended into its corresponding column holder. In
addition, RCFile will record corresponding metadata of
each field in the metadata header.

2) RCFile provides two parameters to control how many
records can be buffered in memory before they are

RCFile

www.cwi.nl/~boncz/bads

Some small steps forward
• MapReduce is a step backward in database access:

– Schemas are good
– Separation of the schema from the application is good
– High-level access languages are good

• MapReduce is poor implementation
– Brute force and only brute force (no indexes, for example)

• MapReduce is not novel
• MapReduce is missing features

– Bulk loader, indexing, updates, transactions…
• MapReduce is incompatible with DMBS tools

✔
✔

✔

Source: Blog post by DeWitt and Stonebraker

?

?

www.cwi.nl/~boncz/bads

MODERN
SQL-ON-HADOOP SYSTEMS

www.cwi.nl/~boncz/bads

Analytical Database Systems

Parallel (MPP):
Teradata Paraccel
Pivotal
Vertica Redshift

Oracle (IMM) Netteza
DB2-BLU InfoBright
SQLserver Vectorwise
(columnstore)

open source:
MySQL LucidDB
MonetDB ?

www.cwi.nl/~boncz/bads

SQL-on-Hadoop Systems
Open Source:
• Hive (HortonWorks)
• Impala (Cloudera)
• Drill (MapR)
• Presto (Facebook)

Commercial:
• HAWQ (Pivotal)
• Vortex (Actian)
• Vertica Hadoop (HP)
• BigQuery (IBM)
• DataBricks
• Splice Machine
• CitusData
• InfiniDB Hadoop

www.cwi.nl/~boncz/bads

“wrapped
legacy”

“from
scratch”

SQL	
Maturity

(performance+features)

Hadoop Integration

“SQL on Hadoop” Systems

Low Native

High

“outside
Hadoop”

www.cwi.nl/~boncz/bads

Analytical DB engines for Hadoop
storage

–columnar storage + compression
–table partitioning / distribution
–exploiting correlated data query-processor

l CPU-efficient query engine
(vectorized or JIT codegen)

l many-core ready
l rich SQL (+authorization+..)

system
l batch update infrastructure
l scaling with multiple nodes
l MetaStore & file formats
l YARN & elasticity

www.cwi.nl/~boncz/bads

Columnar Storage
row-store column-store

Date CustomerProductStore

+ easy to add/modify a record

- might read in unnecessary data

+ only need to read in relevant data

- tuple writes require multiple accesses

=> suitable for read-mostly, read-intensive, large data repositories

Date Store Product Customer Price Price

Query on data and store

Inserting a new record

www.cwi.nl/~boncz/bads

Analytical DB engines for Hadoop
storage

–columnar storage + compression
–table partitioning / distribution
–exploiting correlated data query-processor

l CPU-efficient query engine
(vectorized or JIT codegen)

l many-core ready
l rich SQL (+authorization+..)

system
l batch update infrastructure
l scaling with multiple nodes
l MetaStore & file formats
l YARN & elasticity

www.cwi.nl/~boncz/bads

Columnar Compression
• Trades I/O for CPU

– A winning proposition currently
– Even trading RAM bandwidth for CPU wins

• 64 core machines starved for RAM bandwidth
• Additional column-store synergy:

– Column store: data of the same distribution close together
• Better compression rates
• Generic compression (gzip) vs Domain-aware compression

– Synergy with vectorized processing (see later)
compress/decompress/execution, SIMD

– Can use extra space to store multiple copies of data in different
sort orders (see later)

www.cwi.nl/~boncz/bads

Run-length Encoding

Q1
Q1
Q1
Q1
Q1
Q1
Q1

Q2
Q2
Q2
Q2

…

…

1
1
1
1
1
2
2

1
1
1
2

…

…

Product IDQuarter
(value, start_pos, run_length)

(1, 1, 5)

…

…

Product IDQuarter

(Q2, 301, 350)
(Q3, 651, 500)
(Q4, 1151, 600)

(2, 6, 2)

(1, 301, 3)
(2, 304, 1)

5
7
2
9
6
8
5

3
8
1
4

…

…

Price

5
7
2
9
6
8
5

3
8
1
4

…

…

Price

(Q1, 1, 300)
(value, start_pos, run_length)

www.cwi.nl/~boncz/bads

Bitmap Encoding

1
1
1
1
1
2
2

1
1
2
3

…

…

Product ID

1
1
1
1
1
0
0

1
1
0
0

…

…

ID: 1 ID: 2 ID: 3

0
0
0
0
0
0
0

0
0
0
0

…

…

…

0
0
0
0
0
0
0

0
0
0
1

…

…

0
0
0
0
0
1
1

0
0
1
0

…

…

“Integrating Compression and Execution in Column-Oriented
Database Systems” Abadi et. al, SIGMOD ’06

• For each unique
value, v, in column c,
create bit-vector b

– b[i] = 1 if c[i] = v
• Good for columns

with few unique
values

• Each bit-vector can
be further
compressed if sparse

www.cwi.nl/~boncz/bads

Q1
Q2
Q4
Q1
Q3
Q1
Q1

Q2
Q4
Q3
Q3
…

Quarter

Q1

0
1
3
0
2
0
0

1
3
2
2

Quarter

0

0: Q1
1: Q2
2: Q3
3: Q4

Dictionary Encoding

Dictionary
+

“Integrating Compression and Execution in Column-Oriented
Database Systems” Abadi et. al, SIGMOD ’06

• For each unique
value create
dictionary entry

• Dictionary can
be per-block or
per-column

• Column-stores
have the
advantage that
dictionary
entries may
encode multiple
values at once

www.cwi.nl/~boncz/bads

Differential Encoding

5:00
5:02
5:03
5:03
5:04
5:06
5:07

5:10
5:15
5:16
5:16

…

Time

5:08

2
1
0
1
2

1

1

0

Time

2

5:00

1

∞
5:15

2 bits per
value

Exceptions (there
are better ways to
deal with
exceptions)

• Encodes values as b bit offset from
previous value

• Special escape code (just like
frame of reference encoding)
indicates a difference larger than
can be stored in b bits

– After escape code, original
(uncompressed) value is written

• Performs well on columns
containing increasing/decreasing
sequences

– inverted lists
– timestamps
– object IDs
– sorted / clustered columns

“Improved Word-Aligned Binary
Compression for Text Indexing” Ahn,
Moffat, TKDE’06

www.cwi.nl/~boncz/bads

Heavy-Weight Compression Schemes

• Modern disks (SSDs) can achieve > 1GB/s
• 1/3 CPU for decompression è 3GB/s needed

è Lightweight compression schemes are better

è Even better: operate directly on compressed data

“Super-Scalar RAM-CPU Cache Compression”
Zukowski, Heman, Nes, Boncz, ICDE’06

www.cwi.nl/~boncz/bads

Examples
• SUMi(rle-compressed column[i]) è SUMg(count[g] * value[g])
• (country == “Asia”) è countryCode == 6

strcmp SIMD

Benefits:
• I/O - CPU tradeoff is no longer a tradeoff (CPU also gets improved)
• Reduces memory–CPU bandwidth requirements
• Opens up possibility of operating on multiple records at once

Operating Directly on Compressed Data

“Integrating Compression and Execution in Column-Oriented
Database Systems” Abadi et. al, SIGMOD ’06

www.cwi.nl/~boncz/bads

Analytical DB engines for Hadoop
storage

–columnar storage + compression
–table partitioning / distribution
–exploiting correlated data query-processor

l CPU-efficient query engine
(vectorized or JIT codegen)

l many-core ready
l rich SQL (+authorization+..)

system
l batch update infrastructure
l scaling with multiple nodes
l MetaStore & file formats
l YARN & elasticity

www.cwi.nl/~boncz/bads

• data is spread based on a Key
– Functions: Hash, Range, List

• “distribution”
– Goal: parallelism

• give each compute node a piece of the data
• each query has work on every piece (keep everyone busy)

• “partitioning”
– Goal: data lifecycle management

• Data warehouse e.g. keeps last six months
• Every night: load one new day, drop the oldest partition

– Goal: improve access patterm
• when querying for May, drop Q1,Q3,Q4 (“partition pruning”)

Table Partitioning and Distribution

distribute by hash

Q1

Q2

Q3

Q4

partition by
range

Which kind of function would you use for which method?

www.cwi.nl/~boncz/bads

• Each node writes the partitions it owns
– Where does the data end up, really?

• HDFS default block placement strategy:
– Node that initiates writes gets first copy
– 2nd copy on the same rack
– 3rd copy on a different rack

• Rows from the same record should on the same node
– Not entirely trivial in column stores

• Column partitions should be co-located
– Simple solution:

• Put all columns together in one file (RCFILE, ORCFILE, Parquet)
– Complex solution:

• Replace the default HDFS block placement strategy by a custom one

Data Placement in Hadoop

distribute by hash

Q1

Q2

Q3

Q4

partition by
range

www.cwi.nl/~boncz/bads

• Good old CSV
– Textual, easy to parse (but slow), better compress it!

• Sequence Files
– Binary data, faster to process

• RCfile
– Hive first attempt at column-store

• ORCfile
– Columnar compression, MinMax

• Parquet
– Proposed by Twitter and Cloudera Impala
– Like ORCfile, no MinMax

Popular File Formats in Hadoop

distribute by hash

Q1

Q2

Q3

Q4

partition by
range

www.cwi.nl/~boncz/bads

Example: Parquet Format

www.cwi.nl/~boncz/bads

Example: Parquet Format

www.cwi.nl/~boncz/bads

HCatalog (“Hive MetaStore”)
De-facto Metadata Standard on Hadoop
• Where are the tables? Wat do they contain? How are they Partitioned?
• Can I read from them? Can I write to them?

SQL-on-Hadoop challenges:
• Reading-writing many file formats
• Opening up the own datastore to

foreign tools that read from it
HCatalog makes UDFs less

important!

www.cwi.nl/~boncz/bads

Analytical DB engines for Hadoop
storage

–columnar storage + compression
–table partitioning / distribution
–exploiting correlated data query-processor

l CPU-efficient query engine
(vectorized or JIT codegen)

l many-core ready
l rich SQL (+authorization+..)

system
l batch update infrastructure
l scaling with multiple nodes
l MetaStore & file formats
l YARN & elasticity

www.cwi.nl/~boncz/bads

• Data is often naturally ordered
– very often, on date

• Data is often correlated
– orderdate/paydate/shipdate
– marketing campaigns/date
– ..correlation is everywhere

..hard to predict

Zone Maps
– Very sparse index
– Keeps MinMax for every column
– Cheap to maintain

• Just widen bounds on
each modification

Exploiting Natural Order

Q: key BETWEEN 13 AND 15?

Q: acctno BETWEEN 150 AND 200?

zone 0
zone 1

zone 2
3one 3

zone

www.cwi.nl/~boncz/bads

Analytical DB engines for Hadoop
storage

–columnar storage + compression
–table partitioning / distribution
–exploiting correlated data query-processor

l CPU-efficient query engine
(vectorized or JIT codegen)

l many-core ready
l rich SQL (+authorization+..)

system
l batch update infrastructure
l scaling with multiple nodes
l MetaStore & file formats
l YARN & elasticity

www.cwi.nl/~boncz/bads

DBMS Computational Efficiency?
TPC-H 1GB, query 1
• selects 98% of fact table, computes net prices and aggregates all
• Results:

– C program: ?
– MySQL: 26.2s
– DBMS “X”: 28.1s

“MonetDB/X100: Hyper-Pipelining Query
Execution ” Boncz, Zukowski, Nes, CIDR’05

www.cwi.nl/~boncz/bads

DBMS Computational Efficiency?
TPC-H 1GB, query 1
• selects 98% of fact table, computes net prices and aggregates all
• Results:

– C program: 0.2s
– MySQL: 26.2s
– DBMS “X”: 28.1s

“MonetDB/X100: Hyper-Pipelining Query
Execution ” Boncz, Zukowski, Nes, CIDR’05

www.cwi.nl/~boncz/bads

SCAN

SELECT

PROJECT

alice 22101
next()

next()

next()

ivan 37102

ivan 37102

ivan 37102

ivan 350102

alice 22101

SELECT id, name
(age-30)*50 AS bonus

FROM employee
WHERE age > 30

350

FALSETRUE

22 > 30 ?37 > 30 ?

37 – 30 7 * 50

7

How Do Query Engines Work?

www.cwi.nl/~boncz/bads

SCAN

SELECT

PROJECT

next()

next()

next()

ivan 350102

Operators

Iterator interface
-open()
-next(): tuple
-close()

How Do Query Engines Work?

www.cwi.nl/~boncz/bads

SCAN

SELECT

PROJECT

alice 22101
next()

next()

next()

ivan 37102

ivan 37102

ivan 37102

ivan 350102

alice 22101

350

FALSETRUE

22 > 30 ?37 > 30 ?

37 – 30 7 * 50

7
Primitives

Provide computational
functionality

All arithmetic allowed in
expressions,
e.g. Multiplication

mult(int,int) è int

7 * 50

How Do Query Engines Work?

www.cwi.nl/~boncz/bads

SCAN

SELECT

PROJECT

next()

next()

101
102
104
105

alice
ivan
peggy
victor

22
37
45
25

7
15

FALSE
TRUE
TRUE
FALSE

37
45

ivan
peggy

102
104

350
750

ivan
peggy

102
104

350
750

Observations:

next() called much less
often è more time spent
in primitives less in
overhead

primitive calls process an
array of values in a
loop:

> 30 ?

- 30 * 50

22
37
45
25

alice
ivan
peggy
victor

101
102
104
105

“Vectorized In Cache
Processing”

vector = array of
~100

processed in a tight
loop

CPU cache Resident

next()

“MonetDB/X100: Hyper-Pipelining Query Execution
” Boncz, Zukowski, Nes, CIDR’05

www.cwi.nl/~boncz/bads

SCAN

SELECT

PROJECT

next()

next()

101
102
104
105

alice
ivan
peggy
victor

22
37
45
25

7
15

FALSE
TRUE
TRUE
FALSE

37
45

ivan
peggy

102
104

350
750

ivan
peggy

102
104

350
750

Observations:

next() called much less
often è more time spent
in primitives less in
overhead

primitive calls process an
array of values in a
loop:

> 30 ?

- 30 * 50

CPU Efficiency depends on “nice” code
- out-of-order execution
- few dependencies (control,data)
- compiler support

Compilers like simple loops over arrays
- loop-pipelining
- automatic SIMD

22
37
45
25

alice
ivan
peggy
victor

101
102
104
105

next()

“MonetDB/X100: Hyper-Pipelining Query Execution
” Boncz, Zukowski, Nes, CIDR’05

www.cwi.nl/~boncz/bads

SCAN

SELECT

PROJECT
FALSE
TRUE
TRUE
FALSE

350
750

Observations:

next() called much less
often è more time spent
in primitives less in
overhead

primitive calls process an
array of values in a
loop:

> 30 ?

* 50

CPU Efficiency depends on “nice” code
- out-of-order execution
- few dependencies (control,data)
- compiler support

Compilers like simple loops over arrays
- loop-pipelining
- automatic SIMD

FALSE
TRUE
TRUE
FALSE

> 30 ?

7
15

- 30

350
750

* 50

for(i=0; i<n; i++)

res[i] = (col[i] > x)

for(i=0; i<n; i++)

res[i] = (col[i] - x)

for(i=0; i<n; i++)

res[i] = (col[i] * x)

“MonetDB/X100: Hyper-Pipelining Query Execution
” Boncz, Zukowski, Nes, CIDR’05

www.cwi.nl/~boncz/bads
VLDB 2009 Tutorial 54

Varying the Vector size

Less and less iterator.next()
and

primitive function calls
(“interpretation overhead”)

“MonetDB/X100: Hyper-Pipelining Query
Execution ” Boncz, Zukowski, Nes, CIDR’05

www.cwi.nl/~boncz/bads
VLDB 2009 Tutorial 55

Vectors start to exceed the
CPU cache, causing

additional memory traffic

“MonetDB/X100: Hyper-Pipelining Query
Execution ” Boncz, Zukowski, Nes, CIDR’05

Varying the Vector size

www.cwi.nl/~boncz/bads

Systems That Use Vectorization
• Actian Vortex (Vectorwise-on-Hadoop)
• Hive, Drill

www.cwi.nl/~boncz/bads

Analytical DB engines for Hadoop
storage

–columnar storage + compression
–table partitioning / distribution
–exploiting correlated data query-processor

l CPU-efficient query engine
(vectorized or JIT codegen)

l many-core ready
l rich SQL (+authorization+..)

system
l batch update infrastructure
l scaling with multiple nodes
l MetaStore & file formats
l YARN & elasticity

www.cwi.nl/~boncz/bads

Analytical DB engines for Hadoop
storage

–columnar storage + compression
–table partitioning / distribution
–exploiting correlated data query-processor

l CPU-efficient query engine
(vectorized or JIT codegen)

l many-core ready
l analytical SQL (windowing)

system
l batch update infrastructure
l scaling with multiple nodes
l MetaStore & file formats
l YARN & elasticity

www.cwi.nl/~boncz/bads

Asynchronous
Data Transfer

TUPLE MOVER

> Read Optimized
Store (ROS)

• On disk
• Sorted / Compressed
• Segmented
• Large data loaded direct

Batch Update Infrastructure (Vertica)
Challenge: hard to update columnar compressed data

(A B C | A)

A B C

Trickle
Load

> Write Optimized
Store (WOS)

§ Memory based
§ Unsorted / Uncompressed
§ Segmented
§ Low latency / Small quick

inserts

A B C

www.cwi.nl/~boncz/bads

Batch Update Infrastructure (Hive)
Challenge: HDFS read-only + large block size

Merge During Query Processing

www.cwi.nl/~boncz/bads

Analytical DB engines for Hadoop
storage

–columnar storage + compression
–table partitioning / distribution
–exploiting correlated data query-processor

l CPU-efficient query engine
(vectorized or JIT codegen)

l many-core ready
l rich SQL (+authorization+..)

system
l batch update infrastructure
l scaling with multiple nodes
l MetaStore & file formats
l YARN & elasticity

www.cwi.nl/~boncz/bads

SQL-99 OLAP Extensions
• ORDER BY .. PARTITION BY

– window specifications inside a partition
• first_value(), last_value(), …

– Rownum(), dense_rank(), …

www.cwi.nl/~boncz/bads

Analytical DB engines for Hadoop
storage

–columnar storage + compression
–table partitioning / distribution
–exploiting correlated data query-processor

l CPU-efficient query engine
(vectorized or JIT codegen)

l many-core ready
l rich SQL (+authorization+..)

system
l batch update infrastructure
l scaling with multiple nodes
l MetaStore & file formats
l YARN & elasticity

www.cwi.nl/~boncz/bads

Analytical DB engines for Hadoop
storage

–columnar storage + compression
–table partitioning / distribution
–exploiting correlated data query-processor

l CPU-efficient query engine
(vectorized or JIT codegen)

l many-core ready
l rich SQL (+authorization+..)

system
l batch update infrastructure
l scaling with multiple nodes
l MetaStore & file formats
l YARN & elasticity

www.cwi.nl/~boncz/bads

YARN possibilities and limitations
Containers are used to assign:
• cores
• RAM

Limitations:
• no support for disk I/O, network (thrashing still possible)
• Long-running systems (e.g. DBMS) may want to adjust cores and RAM

over time depending on workload è “elasticity”

www.cwi.nl/~boncz/bads

Conclusion
• SQL-on-Hadoop area is very active

– many open-source and commercial initiatives
• There are many design dimensions

– All design dimensions of analytical database systems
• Column storage, compression, vectorization/JIT, MinMax

pushdown, partitioning, parallel scaling, update handling, SQL99,
ODBC/JDBC APIs, authorization

– Hadoop design dimensions
• HCatalog support, reading from and getting read from other

Hadoop tools (/writing to..), file format support, HDFS locality,
YARN integration

www.cwi.nl/~boncz/bads

SQL IN THE CLOUD
- BUT NOT ON HADOOP

www.cwi.nl/~boncz/bads

Amazon Redshift
• Cloud version of ParAccel, a parallel database

– ParAccel is hard to manage, maintain
– Redshift invested in simplying management, using web interface

• No knobs, kind of elastics, User Defined Functions (python)
• Highly performant, but storage more expensive than S3 (local disks)

www.cwi.nl/~boncz/bads

Snowflake
• Brand-new, from-scratch system that works in AWS – RedShift competitor
• Stores data on S3 (cheap!) but caches it in local disks for performance
• Highly elastic, supports UDFs using JavaScript, table snapshots (“clone table”)
• Puts JSON documents in automatically recognized table format (queryable)

