

Big Data for Data Science

SQL on Big Data

THE DEBATE: DATABASE SYSTEMS VS MAPREDUCE

www.cwi.nl/~boncz/bads

A major step backwards?

- MapReduce is a step backward in database access
 - Schemas are good

Centrum Wiskunde & Informatica

- Separation of the schema from the application is good
- High-level access languages are good
- MapReduce is poor implementation
 - Brute force and only brute force (no indexes, for example)
- MapReduce is not novel
- MapReduce is missing features
 - Bulk loader, indexing, updates, transactions...
- MapReduce is incompatible with DMBS tools

Michael Stonebraker Turing Award Winner 2015

- Databases only help if you know what questions to ask
 - "Known unknowns"

Centrum Wiskunde & Informatica

- What's if you don't know what you're looking for?
 - "Unknown unknowns"

ETL: redux

- Often, with noisy datasets, ETL is the analysis!
- Note that ETL necessarily involves brute force data scans
- L, then E and T?

Structure of Hadoop warehouses

CWI

Centrum Wiskunde & Informatica

A major step backwards?

- MapReduce is a step backward in database access:
 - Schemas are good

Centrum Wiskunde & Informatica

- Separation of the schema from the application is good
- High-level access languages are good
- MapReduce is poor implementation
 - Brute force and only brute force (no indexes, for example)
- MapReduce is not novel
- MapReduce is missing features
 - Bulk loader, indexing, updates, transactions...
- MapReduce is incompatible with DMBS tools

Bottom line: issue of maturity, not fundamental capability!

Relational databases vs. MapReduce

Relational databases:

Centrum Wiskunde & Informatica

- Multipurpose: analysis and transactions; batch and interactive
- Data integrity via ACID transactions
- Lots of tools in software ecosystem (for ingesting, reporting, etc.)
- Supports SQL (and SQL integration, e.g., JDBC)
- Automatic SQL query optimization
- MapReduce (Hadoop):
 - Designed for large clusters, fault tolerant
 - Data is accessed in "native format"
 - Supports many query languages
 - Programmers retain control over performance
 - Open source

Philosophical differences

- Parallel relational databases
 - Schema on write
 - Failures are relatively infrequent
 - "Possessive" of data
 - Mostly proprietary
- MapReduce
 - Schema on read
 - Failures are relatively common
 - In situ data processing
 - Open source

MapReduce vs. RDBMS: grep

SELECT * FROM Data WHERE field LIKE '%XYZ%';

www.cwi.nl/~boncz/bads

MapReduce vs. RDBMS: select

SELECT pageURL, pageRank FROM Rankings WHERE pageRank > X;

www.cwi.nl/~boncz/bads

MapReduce vs. RDBMS: aggregation

SELECT sourceIP, SUM(adRevenue) FROM UserVisits GROUP BY sourceIP;

www.cwi.nl/~boncz/bads

MapReduce vs. RDBMS: join

Why?

- Schemas are a good idea
 - Parsing fields out of flat text files is slow
 - Schemas define a contract, decoupling logical from physical
- Schemas allow for building efficient auxiliary structures
 - Value indexes, join indexes, etc.
- Relational algorithms have been optimised for the underlying system
 - The system itself has complete control of performance-critical decisions
 - Storage layout, choice of algorithm, order of execution, etc.

Alleviating schema absence: thrift

- Originally developed by Facebook, now an Apache project
- Provides a Data Definition Language (DDL) with numerous language bindings
 - Compact binary encoding of typed structs
 - Fields can be marked as optional or required
 - Compiler automatically generates code for manipulating messages
- Provides Remote Procedure Call (RPC) mechanisms for service definitions
- Alternatives include protobufs and Avro

Centrum Wiskunde & Informatica

Thrift


```
struct Tweet {
  1: required i32 userId;
  2: required string userName;
  3: required string text;
  4: optional Location loc;
}
```

```
struct Location {
  1: required double latitude;
  2: required double longitude;
}
```


Storage layout: row vs. column stores

Row store

Column store

Storage layout: row vs. column stores

Row stores

Centrum Wiskunde & Informatica

- Easy to modify a record
- Might read unnecessary data when processing
- Column stores
 - Only read necessary data when processing
 - Tuple writes require multiple accesses

Advantages of column stores

Read efficiency

Centrum Wiskunde & Informatica

- If only need to access a few columns, no need to drag around the rest of the values
- Better compression
 - Repeated values appear more frequently in a column than repeated rows appear
- Vectorised processing
 - Leveraging CPU architecture-level support
- Opportunities to operate directly on compressed data
 - For instance, when evaluating a selection; or when projecting a column

Why not in Hadoop?

CWI

No reason why not

www.cwi.nl/~boncz/bads

Source: He et al. (2011) RCFile: A Fast and Space-Efficient Data Placement Structure in MapReduce-based Warehouse Systems. ICDE.

Some small steps forward

- MapReduce is a step backward in database access:
 - Schemas are good 🖌

Centrum Wiskunde & Informatica

٠

- Separation of the schema from the application is good
- High-level access languages are good ?
- MapReduce is poor implementation
 - Brute force and only brute force (no indexes, for example)
 - MapReduce is not novel
- MapReduce is missing features
 - Bulk loader, indexing, updates, transactions...
- MapReduce is incompatible with DMBS tools

www.cwi.nl/~boncz/bads

MODERN SQL-ON-HADOOP SYSTEMS

Analytical Database Systems

Parallel (MPP):					
Teradata	Paraccel				
Pivotal					
Vertica	Redshift				
Oracle (IMM) DB2-BLU SQLserver (columnstore)	Netteza InfoBright Vectorwise				

open source: MySQL LucidDB MonetDB

SQL-on-Hadoop Systems

Open Source:

- Hive (HortonWorks)
- Impala (Cloudera)
- Drill (MapR)
- Presto (Facebook)

Commercial:

- HAWQ (Pivotal)
- Vortex (Actian)
- Vertica Hadoop (HP)
- BigQuery (IBM)
- DataBricks
- Splice Machine
- CitusData
- InfiniDB Hadoop

www.cwi.nl/~boncz/bads

- batch update infrastructure
- scaling with multiple nodes
- MetaStore & file formats
- YARN & elasticity

rich SQL (+authorization+..)

+ easy to add/modify a record

+ only need to read in relevant data

- might read in unnecessary data

- tuple writes require multiple accesses

=> suitable for read-mostly, read-intensive, large data repositories

- batch update infrastructure
- scaling with multiple nodes
- MetaStore & file formats
- YARN & elasticity

rich SQL (+authorization+..)

Columnar Compression

- Trades I/O for CPU
 - A winning proposition currently
 - Even trading RAM bandwidth for CPU wins
 - 64 core machines starved for RAM bandwidth
- Additional column-store synergy:
 - Column store: data of the same distribution close together
 - Better compression rates
 - Generic compression (gzip) vs Domain-aware compression
 - Synergy with vectorized processing (see later) compress/decompress/execution, SIMD
 - Can use extra space to store multiple copies of data in different sort orders (see later)

Run-length Encoding

www.cwi.nl/~boncz/bads

"Integrating Compression and Execution in Column-Oriented Database Systems" Abadi et. al, SIGMOD '06

Bitmap Encoding

- For each unique value, v, in column c, create bit-vector b
 - b[i] = 1 if c[i] = v
- Good for columns with few unique values
- Each bit-vector can be further compressed if sparse

www.cwi.nl/~boncz/bads

"Integrating Compression and Execution in Column-Oriented Database Systems" Abadi et. al, SIGMOD '06

Dictionary Encoding

- For each unique value create dictionary entry
- Dictionary can be per-block or per-column
- Column-stores have the advantage that dictionary entries may encode multiple values at once

Differential Encoding

- Encodes values as b bit offset from previous value
- Special escape code (just like frame of reference encoding) indicates a difference larger than can be stored in b bits
 - After escape code, original (uncompressed) value is written
- Performs well on columns containing increasing/decreasing sequences
 - inverted lists
 - timestamps
 - object IDs

CWI

Centrum Wiskunde & Informatica

sorted / clustered columns

"Improved Word-Aligned Binary Compression for Text Indexing" Ahn, Moffat, TKDE'06

Heavy-Weight Compression Schemes

Algorithm	Decompression Bandwidth	
BZIP	10 MB/s	
ZLIB	80 MB/s	
LZO	300 MB/s	

- Modern disks (SSDs) can achieve > 1GB/s
- 1/3 CPU for decompression → 3GB/s needed
- → Lightweight compression schemes are better
- → Even better: operate directly on compressed data

"Integrating Compression and Execution in Column-Oriented Database Systems" Abadi et. al, SIGMOD '06

Operating Directly on Compressed Data

Examples

- SUM_i(rle-compressed column[i]) → SUM_g(count[g] * value[g])
- (country == "Asia") → countryCode == 6
 strcmp SIMD

Benefits:

- I/O CPU tradeoff is no longer a tradeoff (CPU also gets improved)
- Reduces memory–CPU bandwidth requirements
- Opens up possibility of operating on multiple records at once

- MetaStore & file formats
- YARN & elasticity

Table Partitioning and Distribution

- data is spread based on a Key
 - Functions: Hash, Range, List
- "distribution"

Centrum Wiskunde & Informatica

- Goal: parallelism
 - give each compute node a piece of the data
 - each query has work on every piece (keep everyone busy)
- "partitioning"
 - Goal: data lifecycle management
 - Data warehouse e.g. keeps last six months
 - Every night: load one new day, drop the oldest partition
 - Goal: improve access patterm
 - when querying for May, drop Q1,Q3,Q4 ("partition pruning")

Which kind of function would you use for which method?

Data Placement in Hadoop

- Each node writes the partitions it owns
 - Where does the data end up, really?
- HDFS default block placement strategy:
 - Node that initiates writes gets first copy
 - 2nd copy on the same rack
 - 3rd copy on a different rack
- Rows from the same record should on the same node
 - Not entirely trivial in column stores
 - Column partitions should be co-located
 - Simple solution:
 - Put all columns together in one file (RCFILE, ORCFILE, Parquet)
 - Complex solution:
 - Replace the default HDFS block placement strategy by a custom one

Popular File Formats in Hadoop

Good old CSV

Centrum Wiskunde & Informatica

- Textual, easy to parse (but slow), better compress it!
- Sequence Files
 - Binary data, faster to process
- RCfile

- Hive first attempt at column-store
- ORCfile
 - Columnar compression, MinMax
- Parquet
 - Proposed by Twitter and Cloudera Impala
 - Like ORCfile, no MinMax

Example: Parquet Format

Storage format (disk)

Shaded boxes are part of the Parquet project

Example: Parquet Format

Table Format

Column	Туре
CNIEF	string
ownesPhoneNumbers	string
contacts.name	string
contects.phoneNumber	string

AddressBook							
	and a state of the second s		contacts				
owner	ownerr-nonervumbers	name	phoneNumber				
æ	-	-000					
ch	deth	666					
	-		0.0.0				

http://dataera.wordpress.com

ttp://linkedin.com/in/yuechen2

HCatalog ("Hive MetaStore")

De-facto Metadata Standard on Hadoop

- Where are the tables? Wat do they contain? How are they Partitioned?
- Can I read from them? Can I write to them?

Analytical DB engines for Hadoop

storage

- -columnar storage + compression
- -table partitioning / distribution
- -exploiting correlated data

system

- batch update infrastructure
- scaling with multiple nodes
- MetaStore & file formats
- YARN & elasticity

query-processor

- CPU-efficient query engine (vectorized or JIT codegen)
- many-core ready
- rich SQL (+authorization+..)

Exploiting Natural Order

Q: acctno BETWEEN 150 AND 200?

- Data is often naturally ordered
 very often, on date
- Data is often correlated
 - orderdate/paydate/shipdate
 - marketing campaigns/date
 - ..correlation is everywhere
 - ..hard to predict

Zone Maps

Centrum Wiskunde & Informatica

- Very sparse index
- Keeps MinMax for every column
- Cheap to maintain
 - Just widen bounds on
 - each modification

Γ	Accounts							
	KEY	acctno	name	balance				
Γ	00	019	Isabella	269.38	N			
L	01	038	Jackson	914.11	Due			
L	02	072	Lucas	346.61	č			
L	03	156	Sophia	266.55				
L	04	153	Mason	850.90	N			
L	05	282	Ethan	521.60	ne			
L	06	389	Emily	647.38	<u> </u>			
L	07	314	Lily	119.40				
Γ	08	332	Chloe	526.08	N			
	09	302	Emma	497.19	ne			
	10	533	Aiden	22.03	N			
	11	592	Ava	140.67				
Γ	12	808	Mia	383.69	С 0			
	13	896	Jacob	899.41	ňe			

Accounts.MinMax								
700e	ZODA KEY		acctno		name		balance	
	\min	max	\min	max	min	max	min	max
0	00	03	019	156	Isabella	Sophia	266.55	914.11
	04	07	153	380	Emily	Mason	119.40	850.90
2	08	11	332	592	Aiden	Emma	22.03	526.08
3	12	13	808	896	Mia	Jacob	383.69	899.41

Q: key BETWEEN 13 AND 15?

- scaling with multiple nodes
- MetaStore & file formats
- YARN & elasticity

DBMS Computational Efficiency?

TPC-H 1GB, query 1

- selects 98% of fact table, computes net prices and aggregates all
- Results:
 - C program: ?
 - MySQL: 26.2s
 - DBMS "X": 28.1s

"MonetDB/X100: Hyper-Pipelining Query Execution "Boncz, Zukowski, Nes, CIDR'05

DBMS Computational Efficiency?

TPC-H 1GB, query 1

- selects 98% of fact table, computes net prices and aggregates all
- Results:
 - C program: 0.2s
 - MySQL: 26.2s
 - DBMS "X": 28.1s

"MonetDB/X100: Hyper-Pipelining Query Execution" Boncz, Zukowski, Nes, CIDR'05

How Do Query Engines Work?

CWI

SELECT id, name (age-30)*50 AS bonus FROM employee WHERE age > 30

How Do Query Engines Work?

Operators

Iterator interface -open() -**next():** tuple -close()

www.cwi.nl/~boncz/bads

How Do Query Engines Work?

CWI

Primitives

Provide computational functionality

All arithmetic allowed in expressions, e.g. Multiplication

"MonetDB/X100: Hyper-Pipelining Query Execution "Boncz, Zukowski, Nes, CIDR'05

"Vectorized In Cache Processing"

vector = array of ~100

processed in a tight loop

CPU cache Resident

"MonetDB/X100: Hyper-Pipelining Query Execution "Boncz, Zukowski, Nes, CIDR'05

Observations:

next() called much less
often → more time spent
in primitives less in
overhead

primitive calls process an

CPU Efficiency depends on "nice" code

- out-of-order execution
- few dependencies (control,data)
- compiler support

Compilers like simple loops over arrays

- loop-pipelining
- automatic SIMD

"MonetDB/X100: Hyper-Pipelining Query Execution "Boncz, Zukowski, Nes, CIDR'05

Observations:

vectorwise

primitive calls process an

CPU Efficiency depends on "nice" code

- out-of-order execution
- few dependencies (control,data)
- compiler support

Compilers like simple loops over arrays

- loop-pipelining
- automatic SIMD

"MonetDB/X100: Hyper-Pipelining Query Execution "Boncz, Zukowski, Nes, CIDR'05

Varying the Vector size

VLDB 2009 Tutorial

"MonetDB/X100: Hyper-Pipelining Query Execution "Boncz, Zukowski, Nes, CIDR'05

Varying the Vector size

VLDB 2009 Tutorial

Systems That Use Vectorization

- Actian Vortex (Vectorwise-on-Hadoop)
- Hive, Drill

Vectorization

- · Drill operates on more than one record at a time
 - Word-sized manipulations
 - SIMD instructions
 - · GCC, LLVM and JVM all do various optimizations automatically
 - Manually code algorithms
- Logical Vectorization
 - Bitmaps allow lightning fast null-checks
 - Avoid branching to speed CPU pipeline

© MapR Technologies, confidential

- scaling with multiple nodes
- MetaStore & file formats
- YARN & elasticity

YARN & elasticity

www.cwi.nl/~boncz/bads

Batch Update Infrastructure (Vertica)

CWI

Centrum Wiskunde & Informatica

Challenge: hard to update columnar compressed data

www.cwi.nl/~boncz/bads

Batch Update Infrastructure (Hive) Challenge: HDFS read-only + large block size

Base File

Centrum Wiskunde & Informatica

CWI

system

- batch update infrastructure
- scaling with multiple nodes
- MetaStore & file formats
- YARN & elasticity

- many-core ready
- rich SQL (+authorization+..)

SQL-99 OLAP Extensions

ORDER BY .. PARTITION BY

- window specifications inside a partition
 - first_value(), last_value(), ...
- Rownum(), dense_rank(), …

SELECT empr AVG	avg_dept_sal			
FROM emp	;			
EMPNO	DEPTNO	SAL	AVG_DEPT_SAL	
7782	10	2450	2916.66667	
7839	10	5000	2916.66667	
7934	10	1300	2916.66667	
7566	20	2975	2175	
7902	20	3000	2175	
7876	20	1100	2175	
7369	20	800	2175	
7788	20	3000	2175	
7521	30	1250	1566.66667	
7844	30	1500	1566.66667	
7499	30	1600	1566.66667	
7900	30	950	1566.66667	
7698	30	2850	1566.66667	
7654	30	1250	1566,66667	

www.cwi.nl/~boncz/bads

YARN & elasticity

system

- batch update infrastructure
- scaling with multiple nodes
- MetaStore & file formats
- YARN & elasticity

- many-core ready
- rich SQL (+authorization+..)

YARN possibilities and limitations

Containers are used to assign:

- cores
- RAM

Limitations:

- no support for disk I/O, network (thrashing still possible)
- Long-running systems (e.g. DBMS) may want to adjust cores and RAM over time depending on workload → "elasticity"

Conclusion

- SQL-on-Hadoop area is very active
 - many open-source and commercial initiatives
- There are many design dimensions
 - All design dimensions of analytical database systems
 - Column storage, compression, vectorization/JIT, MinMax pushdown, partitioning, parallel scaling, update handling, SQL99, ODBC/JDBC APIs, authorization
 - Hadoop design dimensions
 - HCatalog support, reading from and getting read from other Hadoop tools (/writing to..), file format support, HDFS locality, YARN integration

SQL IN THE CLOUD - **BUT NOT ON HADOOP**

www.cwi.nl/~boncz/bads

Amazon Redshift

- Cloud version of ParAccel, a parallel database
 - ParAccel is hard to manage, maintain
 - Redshift invested in simplying management, using web interface
 - No knobs, kind of elastics, User Defined Functions (python)
 - Highly performant, but storage more expensive than S3 (local disks)

Snowflake

- Brand-new, from-scratch system that works in AWS RedShift competitor
- Stores data on S3 (cheap!) but caches it in local disks for performance
- Highly elastic, supports UDFs using JavaScript, table snapshots ("clone table")

_www.cwi.nl/~boncz/bads

 Puts JSON documents in automatically recognized table format (queryable) Snowflake

Multi-cluster Shared-data Architecture

